大多数图形之间的作品都是在具有交叉注意机制的编码器框架上构建的。最近的研究表明,对输入图结构进行明确建模可以显着改善性能。但是,香草结构编码器无法在所有解码步骤的单个正向通道中捕获所有专业信息,从而导致语义表示不准确。同时,输入图在交叉注意中作为无序序列被扁平,忽略了原始图形结构。结果,解码器中获得的输入图上下文向量可能存在缺陷。为了解决这些问题,我们提出了一种结构感知的交叉注意(SACA)机制,以在每个解码步骤中以结构意识的方式重新编码在新生成的上下文上的输入图表示条件。我们进一步调整SACA,并引入其变体动态图修剪(DGP)机制,以在解码过程中动态下降无关的节点。我们在两个图形数据集(LDC2020T02和ENT-DESC)上实现了新的最新结果,但计算成本仅略有增加。
translated by 谷歌翻译
本文旨在通过探索基于神经网络的方法(称为Sun)中的内在不确定性来提高文本到SQL解析的性能。从数据不确定性的角度来看,可以从多个语义等效的问题中学到单个SQL。从以前仅限于一对一映射的方法中不同,我们提出了一个数据不确定性限制来探索潜在的互补语义语义多个语义等效问题(多对一)中的信息,并以减少的虚假关联来学习稳健的特征表示。通过这种方式,我们可以降低学习表示的敏感性并改善解析器的鲁棒性。从模型的不确定性角度来看,神经网络的权重之间通常存在结构信息(依赖性)。为了提高神经文本到SQL解析器的普遍性和稳定性,我们提出了模型不确定性约束,以通过强制执行不同扰动编码网络的输出表示形式来完善查询表示形式,以使其彼此一致。在五个基准数据集上进行的广泛实验表明,我们的方法显着优于强大的竞争对手,并实现了新的最新结果。为了获得可重复性,我们在https://github.com/alibabaresearch/damo-convai/tree/main/main/sunsql上发布代码和数据。
translated by 谷歌翻译
文本到SQL解析是一项必不可少且具有挑战性的任务。文本到SQL解析的目的是根据关系数据库提供的证据将自然语言(NL)问题转换为其相应的结构性查询语言(SQL)。来自数据库社区的早期文本到SQL解析系统取得了显着的进展,重度人类工程和用户与系统的互动的成本。近年来,深层神经网络通过神经生成模型显着提出了这项任务,该模型会自动学习从输入NL问题到输出SQL查询的映射功能。随后,大型的预训练的语言模型将文本到SQL解析任务的最新作品带到了一个新级别。在这项调查中,我们对文本到SQL解析的深度学习方法进行了全面的评论。首先,我们介绍了文本到SQL解析语料库,可以归类为单转和多转。其次,我们提供了预先训练的语言模型和现有文本解析方法的系统概述。第三,我们向读者展示了文本到SQL解析所面临的挑战,并探索了该领域的一些潜在未来方向。
translated by 谷歌翻译
长期以来,可以将可以应用于新数据库的文本到SQL解析器的重要性已得到认可,实现此目标的关键步骤是架构链接,即在生成SQL时正确地识别未见列或表的提及。在这项工作中,我们提出了一个新颖的框架,以通过基于PoinCar \'e距离指标的探测程序从大规模预训练的语言模型(PLM)中引起关系结构,并使用诱导的关系来增强基于图的解析器为了更好的模式链接。与常用的基于规则的架构链接方法相比,我们发现探测关系也可以稳健地捕获语义对应关系,即使提及和实体的表面形式不同。此外,我们的探测过程完全不受监督,不需要其他参数。广泛的实验表明,我们的框架在三个基准测试中设定了新的最新性能。我们从经验上验证我们的探测程序确实可以通过定性分析找到所需的关系结构。
translated by 谷歌翻译
Text-to-SQL旨在将自然语言问题映射到SQL查询。基于草图的方法与执行引导的(例如)解码策略相结合,在WikiSQL基准上显示了强烈性能。然而,执行引导的解码依赖于数据库执行,这显着降低了推理过程,因此对于许多真实世界的应用程序来说是不令人满意的。在本文中,我们介绍了模式依赖性指导多任务文本到SQL模型(SDSQL)来指导网络以有效地捕获问题和模式之间的交互。所提出的模型优先于两个设置中的所有现有方法,而且没有例如例如。我们展示了架构依赖学习部分涵盖了诸如益处,例如,减轻了对它的需求。没有例如在推理期间显着减少时间消耗的SDSQL,仅牺牲少量性能,并为下游应用提供更多的灵活性。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译